567 research outputs found

    Reflection of a few-cycle laser pulse on a metal nano-layer: generation of phase-dependent wake-fields

    Get PDF
    The reflection and transmission of a few-cycle femtosecond Ti:Sa laser pulse impinging on a metal nano-layer have been analysed. The thickness of the layer was assumed to be of order of 2-10 nm, and the metallic free electrons were represented by a surface current density distributed at the plane boundary of a dielectric substrate. The target studied this way can be imagined, for instance, as a semi-transparent mirror produced by evapotating a thin aluminum layer on the surface of a glass plate. The exact analytic solution has been given for the system of the coupled Maxwell-Lorentz equations decribing the dynamics of the surface current and the scattered radiation fields. It has been shown that in general a non-oscillatoty frozen-in wake-field appears following the main pulse with an exponential decay and with a definite sign of the electric field. The characteristic time of these wake-fields is inversely proportional with the square of the plasma frequency and with the thickness of the metal nano-layer, and can be larger than the original pulse duration. The magnitude of these wake-fields is proportional with the incoming field strength, and the definite sign of them governed by the cosine of the carrier-envelope phase difference of the incoming ultrashort laser pulse. As a consequence, when we let such a wake-field excite the electrons of a secondary target (say an electron beam, a metal plate or a gas jet), we obtain 100 percent modulation in the electron signal in a given direction, as we vary the carrier-envelope phase difference. This scheeme can perhaps serve as a basis for the construction of a robust linear carrier-envelope phase difference meter.Comment: 8 pages, 2 figure

    Phase separation of a driven granular gas in annular geometry

    Full text link
    This work investigates phase separation of a monodisperse gas of inelastically colliding hard disks confined in a two-dimensional annulus, the inner circle of which represents a "thermal wall". When described by granular hydrodynamic equations, the basic steady state of this system is an azimuthally symmetric state of increased particle density at the exterior circle of the annulus. When the inelastic energy loss is sufficiently large, hydrodynamics predicts spontaneous symmetry breaking of the annular state, analogous to the van der Waals-like phase separation phenomenon previously found in a driven granular gas in rectangular geometry. At a fixed aspect ratio of the annulus, the phase separation involves a "spinodal interval" of particle area fractions, where the gas has negative compressibility in the azimuthal direction. The heat conduction in the azimuthal direction tends to suppress the instability, as corroborated by a marginal stability analysis of the basic steady state with respect to small perturbations. To test and complement our theoretical predictions we performed event-driven molecular dynamics (MD) simulations of this system. We clearly identify the transition to phase separated states in the MD simulations, despite large fluctuations present, by measuring the probability distribution of the amplitude of the fundamental Fourier mode of the azimuthal spectrum of the particle density. We find that the instability region, predicted from hydrodynamics, is always located within the phase separation region observed in the MD simulations. This implies the presence of a binodal (coexistence) region, where the annular state is metastable. The phase separation persists when the driving and elastic walls are interchanged, and also when the elastic wall is replaced by weakly inelastic one.Comment: 9 pages, 10 figures, to be published in PR

    Instability of dilute granular flow on rough slope

    Full text link
    We study numerically the stability of granular flow on a rough slope in collisional flow regime in the two-dimension. We examine the density dependence of the flowing behavior in low density region, and demonstrate that the particle collisions stabilize the flow above a certain density in the parameter region where a single particle shows an accelerated behavior. Within this parameter regime, however, the uniform flow is only metastable and is shown to be unstable against clustering when the particle density is not high enough.Comment: 4 pages, 6 figures, submitted to J. Phys. Soc. Jpn.; Fig. 2 replaced; references added; comments added; misprints correcte

    Subdiffusive axial transport of granular materials in a long drum mixer

    Full text link
    Granular mixtures rapidly segregate radially by size when tumbled in a partially filled horizontal drum. The smaller component moves toward the axis of rotation and forms a buried core, which then splits into axial bands. Models have generally assumed that the axial segregation is opposed by diffusion. Using narrow pulses of the smaller component as initial conditions, we have characterized axial transport in the core. We find that the axial advance of the segregated core is well described by a self-similar concentration profile whose width scales as tαt^\alpha, with α0.3<1/2\alpha \sim 0.3 < 1/2. Thus, the process is subdiffusive rather than diffusive as previously assumed. We find that α\alpha is nearly independent of the grain type and drum rotation rate within the smoothly streaming regime. We compare our results to two one-dimensional PDE models which contain self-similarity and subdiffusion; a linear fractional diffusion model and the nonlinear porous medium equation.Comment: 4 pages, 4 figures, 1 table. Submitted to Phys Rev Lett. For more info, see http://www.physics.utoronto.ca/nonlinear

    Interstitial gas and density-segregation in vertically-vibrated granular media

    Full text link
    We report experimental studies of the effect of interstitial gas on mass-density-segregation in a vertically-vibrated mixture of equal-sized bronze and glass spheres. Sufficiently strong vibration in the presence of interstitial gas induces vertical segregation into sharply separated bronze and glass layers. We find that the segregated steady state (i.e., bronze or glass layer on top) is a sensitive function of gas pressure and viscosity, as well as vibration frequency and amplitude. In particular, we identify distinct regimes of behavior that characterize the change from bronze-on-top to glass-on-top steady-state.Comment: 4 pages, 5 figures, submitted to PRL; accepted in PRE as rapid communication, with revised text and reference

    Lifetimes of Confined Acoustic Phonons in Ultra-Thin Silicon Membranes

    Get PDF
    We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultra-thin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from \sim 4.7 ns to 5 ps with decreasing membrane thickness from \sim 194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures

    Close-packed floating clusters: granular hydrodynamics beyond the freezing point?

    Full text link
    Monodisperse granular flows often develop regions with hexagonal close packing of particles. We investigate this effect in a system of inelastic hard spheres driven from below by a "thermal" plate. Molecular dynamics simulations show, in a wide range of parameters, a close-packed cluster supported by a low-density region. Surprisingly, the steady-state density profile, including the close-packed cluster part, is well described by a variant of Navier-Stokes granular hydrodynamics (NSGH). We suggest a simple explanation for the success of NSGH beyond the freezing point.Comment: 4 pages, 5 figures. To appear in Phys. Rev. Let

    ac-Field-Controlled Anderson Localization in Disordered Semiconductor Superlattices

    Full text link
    An ac field, tuned exactly to resonance with the Stark ladder in an ideal tight binding lattice under strong dc bias, counteracts Wannier-Stark localization and leads to the emergence of extended Floquet states. If there is random disorder, these states localize. The localization lengths depend non-monotonically on the ac field amplitude and become essentially zero at certain parameters. This effect is of possible relevance for characterizing the quality of superlattice samples, and for performing experiments on Anderson localization in systems with well-defined disorder.Comment: 10 pages, Latex; figures available on request from [email protected]
    corecore